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Local filters: 
Spatial receptive fields
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a weighted
sum of the image over space and time, and this result is normalized by the responses of
neighboring units, and passed through a pointwise non-linearity (see e.g., Carandini et al.,
1997

It may seem surprising to some that we should take such a stance. V1 does
afterall have a seemingly ordered appearance—a clear topographic map, and an or-
derly arrangement of ocular dominance and orientation columns. Many neurons are
demonstrably tuned for stimulus features such as orientation, spatial-frequency, color,
direction of motion, and disparity. And there has even emerged a fairly well agreed
upon “standard model” for V1 in which simple-cells compute a linearly weighted sum
of the input over space and time (usually a Gabor-like function) and the output is
passed through a pointwise nonlinearity, in addition to being subject to contrast gain
control to avoid response saturation (Figure 1). Complex cells are similarly explained
in terms of summing the outputs of a local pool of simple-cells with similar tuning
properties but different positions or phases. The net result is to think of V1 roughly
as a “Gabor filter bank.” There are now many papers showing that this basic model
fits much of the existing data well, and many scientists have come to accept this as a
working model of V1 function (see e.g., Lennie, 2003a)

But behind this picture of apparent orderliness, there lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly uncom-
fortable feeling among many about how the experiments that have led to our current
view of V1 were conducted in the first place. The main problem stems from the
fact that cortical neurons are highly nonlinear—i.e., they emit all-or-nothing action
potentials, not analog values. They also adapt, so their response properties depend
upon the history of activity. Cortical pyramidal cells have highly elaborate dendritic
trees, and realistic biophysical models suggest that each thin branch could act as a
non-linear subunit, so that any one neuron could be computing many different non-
linear combinations of its inputs (Hausser & Mel, 2003), in addition to being sensitive
to coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003). Everyone knows
that neurons are non-linear, but few have acknowledged the implications for studying
cortical function. Unlike linear systems, where there exist mathematically tractable,
textbook methods for system identification, non-linear systems can not be teased
apart using some straightforward, reductionist approach. In other words, there is no
general method for characterizing non-linear systems.2

2The Volterra series expansion is often touted as a general approach for characterizing non-linear
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Applications:  “back pocket models” for texture 
segmentation (Chubb & Landy; Landy & Graham)
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Craik-O’Brien effect

Based on what what you’ve learned about 
the spatial filtering properties of  V1 cells, i.e. 
their receptive fields, what would you predict 

cortical responses to be in the boxes?
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C Progress Report

During the past 4-year grant cycle, our grant research resulted in 32 peer-reviewed papers, and 42 conference
abstracts. We review our work below, with particular emphasis on results closely tied to the new proposed
experiments.

Our previous grant had the specific aims: 1) What are the neural mechanisms underlying perceptual group-
ing in shape perception? 2) How are contextual and local visual cues integrated to construct surface and shape
representations? 3) How does vision combine information from different cues to detect changes in surface
depth? 4) How can Bayesian models of object perception be extended to deal with the complexities of natural
images? We have organized the Progress Report into sections that reflect the three major themes of this renewal
request, highlighting in each section results relevant to specific aims of the previous grant cycle.

This past research effort supported and trained graduate students: Fang Fang, now a professor at Beijing
Univ.; Cheryl Olman, now assistant professor in Radiology and Psychology at U. Minnesota, and a PI on this
renewal; Yi Jiang, Eric Schlicht, Rashmi Sundareswara, Robert Shannon, current graduate students. Dr. Scott
Murray was a post-doc, and is now an assistant professor at the University of Washington. Dr. Huseyin Boyaci
and Dr. Katja Doerschner are post-docs. We also benefited considerably from non-RO1 sources of support for
graduate and post-doc personnel (NRSA, NSF pre-doctoral fellowships, Graduate school and Miller fellowships
from U. Minn., NIH funded Computational Neuroscience and Cognitive Science training programs).
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Figure 3: Lightness. (Progress Report and Exp. 1.1) A. Each stimulus (see Panel B) was first presented
statically for 18 seconds followed by a square wave modulated counterphase flicker for 12 seconds. Observers
performed a fixation task requiring them to press a button when they saw the target letter (X) among rapidly
changing distracters (each letter was presented for approximately 120 milliseconds.) B. Craik-O’Brien Illusion
stimuli. We measured behavioral and fMRI responses to the Craik-O’Brien stimulus that induces the lightness
percept (“Illusory”) and compared this to a “Real” condition where luminance of flanks actually varied. The
responses were also compared to a control stimulus. The central portions of the illusory and control stimuli were
identical, but perceived lightness is much smaller in the control stimulus. C. Region of interest (ROI) definitions.
Counterphase flickering checker patterns were used to localize cortical areas corresponding to the flanks of the
stimuli. D. The areas of the visual cortex activated by the localizers for one observer: red lower ROIs, blue upper
ROIs. E. FMRI results averaged across observers. In the retinotopic cortical areas V1, V2 and V3, the response to
the illusory luminance variation was smaller than the activity for real luminance variation. However this difference
was statistically significant only in V1. On the other hand, the fMRI signal to illusory luminance variation was larger
than that to control stimulus in V1. In V2 and V3 the difference was statistically significant between illusory and
the Control. The difference between Illusory and Control conditions suggest that the fMRI signal measured was
due to lightness variations, not merely due to the distant contrast border. Error bars represent one standard error
of the mean (s.e.m.). Statistically significant differences are indicated (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).
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Directed attention is 
not important


